合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 油藏條件下CO_2乳液穩定性實驗
> 連鑄結晶器內渣鋼兩相表面張力和界面張力的演變行為與機制
> 連接基對3種表面活性劑GSS271、GSS371和GSS471動態表面性能的影響(上)
> 天然和合成寶石的表面張力怎么測
> 高沸點表面活性劑對納米LiBr溶液表面張力沸騰溫度的影響(下)
> 界面張力儀評估氨基化氧化石墨烯-脂肪酸共吸附機制、應用潛力(二)
> 基于界面張力弛豫法考察羥基取代烷基苯磺酸鹽的界面擴張流變性質(三)
> 表面張力儀應用:研究活性磁化水對無煙煤塵的濕潤作用(一)
> 植物笛醇含量對油水界面張力的影響
> 高鹽油藏下兩性/陰離子表面活性劑協同獲得油水超低界面張力的方法(二)
推薦新聞Info
-
> 超微量天平比普通電子天平“好”在哪?
> 界面張力儀評估氨基化氧化石墨烯-脂肪酸共吸附機制、應用潛力(四)
> 界面張力儀評估氨基化氧化石墨烯-脂肪酸共吸附機制、應用潛力(三)
> 界面張力儀評估氨基化氧化石墨烯-脂肪酸共吸附機制、應用潛力(二)
> 界面張力儀評估氨基化氧化石墨烯-脂肪酸共吸附機制、應用潛力(一)
> LB膜分析儀證明SP-B在肺表面活性物質三維結構形成中的關鍵作用
> 新型多功能解堵體系-單相酸體系乳化、界面張力測定及現場應用效果(二)
> 新型多功能解堵體系-單相酸體系乳化、界面張力測定及現場應用效果(一)
> 不同干燥方式對蛋清蛋白功能特性、溶解度、接觸角、表面張力的影響(四)
> 不同干燥方式對蛋清蛋白功能特性、溶解度、接觸角、表面張力的影響(三)
界面張力儀評估氨基化氧化石墨烯-脂肪酸共吸附機制、應用潛力(四)
來源:應用化學 瀏覽 12 次 發布時間:2025-10-30
固定NH2-PEG-GO質量濃度(0.1 mg/mL),分析改變正辛烷溶液中PA質量濃度時界面張力的變化情況。動態界面張力的演變如圖7所示,當正辛烷中PA質量濃度小于5 mg/mL時,即使加入微量的NH2-PEG-GO(0.1 mg/mL)就能夠顯著降低界面張力,相比于不添加NH2-PEG-GO時的情況降低了約15 mN/m。然而,隨著PA質量濃度的增加(0.005~5 mg/mL),界面張力僅從32 mN/m降低到25 mN/m(圖7B)。在不添加NH2-PEG-GO時,隨PA質量濃度增加(0.005~5 mg/L),界面張力的下降值則約為20 mN/m(圖7A)。這表明NH2-PEG-GO的添加使得PA在界面上吸附減少,NH2-PEG-GO成為降低界面張力的主導因素。然而隨著PA質量濃度升高,PA的界面吸附量逐漸達到飽和,少量NH2-PEG-GO的存在不會顯著降低界面張力。當PA的質量濃度達到5 mg/mL時,存在0.1 mg/mL NH2-PEG-GO僅比不存在時降低了約2 mN/m,這是由于此時界面被PA占滿,沒有足夠的空間供NH2-PEG-GO進行吸附。
圖7水相中NH2-PEG-GO質量濃度為(A)0 mg/mL和(B)0.1 mg/mL時,正辛烷/水之間的界面張力隨PA質量濃度的變化曲線
為了進一步分析各組分對界面張力的貢獻,分別計算了0.1、0.5和2.5 mg/mL NH2-PEG-GO和不同質量濃度PA的平衡表面壓力ПBM、各組分單獨添加時表面壓力ПPA、ПGO以及這兩部分表面壓力的加和ПΣ,表面壓力根據以下關系式(公式(7))進行計算。
ПBM/ПΣ反映了PA與NH2-PEG-GO對界面張力影響的累積效應。在所有研究條件下,ПBM/ПΣ<1,這表明在吸附后期PA與NH2-PEG-GO之間存在競爭吸附。并且,隨著PA、NH2-PEG-GO質量濃度增加ПBM/ПΣ值減小,表明PA與NH2-PEG-GO之間競爭增強(圖8)。
圖8 PA和NH2-PEG-GO在不同質量濃度條件下的ПBM/ПΣ,t=1000 s
2.5脂肪酸鏈長度與質量濃度對NH2-PEG-GO水-油界面張力的影響
在前面的分析中,選用了軟脂酸(C16)作為研究對象。同時也研究了脂肪酸鏈長度對脂肪酸與NH2-PEG-GO界面共吸附行為的影響,將不同烷基鏈長度的脂肪酸(正癸酸(C10)、軟脂酸(C16)、花生酸(C20))溶解于正辛烷,固定水相中NH2-PEG-GO質量濃度(0.1 mg/mL),進行界面張力測試。
對比不同鏈長脂肪酸在不同質量濃度時的動態界面張力(圖9A-9C),發現雖然脂肪酸在正辛烷中的擴散系數隨著碳鏈的增長而減小(表2),但添加高質量濃度C20酸時,界面張力值到達平衡的時間明顯縮短,這表明脂肪酸烷基鏈長度會影響脂肪酸在界面的性質。并且發現脂肪酸烷基鏈越長,與NH2-PEG-GO協同穩定的水-正辛烷界面張力越低。并且隨著脂肪酸質量濃度增加,烷基鏈鏈長增加對界面張力降低效果越明顯(圖9D)。
圖9不同質量濃度、不同烷基鏈長度脂肪酸(A)C10、(B)C16和(C)C20在NH2-PEG-GO水-正辛烷溶液之間界面張力隨時間演變曲線及(D)不同烷基鏈長度脂肪酸的平衡界面張力隨脂肪酸質量濃度變化曲線,NH2-PEG-GO質量濃度固定為0.1 mg/mL
表2脂肪酸分子的基本參數
當利用不同鏈長的脂肪酸與NH2-PEG-GO協同穩定水-油界面張力時,界面張力的降低需要考慮來自烷基鏈結構對界面張力的影響:研究發現脂肪酸的烷基鏈越長,其在界面排列的有序度越高,烷基鏈傾向于垂直于界面排列,在界面形成更緊密堆積的吸附層。同時還發現,脂肪酸的親水羧基在界面上存在兩種不同的狀態,即未解離的—COOH和帶負電荷的—COO-。當正辛烷中脂肪酸的質量濃度增加時,吸附在水-油界面上的脂肪酸分子間距離將逐漸拉近,此時脂肪酸分子疏水烷基鏈之間的范德華吸引相互作用以及—COOH與—COO-基團之間的離子-偶極吸引相互作用隨之增強,并且發現這兩種吸引相互作用將隨烷基鏈長度的增加而增強,而吸引相互作用的增強也會縮短脂肪酸分子間距離,有利于分子在界面形成致密吸附層,從而有效降低界面張力。這可以解釋在添加高質量濃度脂肪酸時,長鏈脂肪酸能更有效地降低界面張力的現象。
3結論
利用界面張力儀研究氨基化氧化石墨烯(NH2-PEG-GO)質量濃度、脂肪酸質量濃度以及脂肪酸鏈長度對于NH2-PEG-GO與脂肪酸在水-油界面共吸附動力學的影響。
結果表明,脂肪酸在吸附平衡階段為擴散控制的過程,而NH2-PEG-GO在界面吸附平衡階段符合混合動力學吸附機制,吸附過程存在能量勢壘。當NH2-PEG-GO與脂肪酸共吸附時,二者存在協同效應。通過分析單個組分對總界面壓力的影響,發現前期界面張力降低是由脂肪酸吸附引起,而NH2-PEG-GO的存在顯著影響吸附后期的水-油界面張力值。而且在吸附后期,NH2-PEG-GO和脂肪酸分子之間存在競爭吸附,隨著PA、NH2-PEG-GO質量濃度增加,二者的競爭吸附增強。同時,脂肪酸鏈長的增加有利于NH2-PEG-GO與PA在界面形成更致密的吸附層,從而更有效地降低界面張力。這些結果可以為NH2-PEG-GO在驅油領域的應用提供新的思路。





