合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 低分子熱塑性樹脂體系CBT500/DBTL的界面張力與溫度的關聯性(二)
> 乳化劑——水和油之間的調和劑
> 中性聚合物鍵合劑(NPBA)與奧克托今(HMX)界面張力測定及應用效果(一)
> 配制淡紅色噴印墨水時,如何測量其表面張力
> 氣液液微分散體系的微流控制備方法及在稀土離子萃取領域的應用(下)
> Sb合金元素對鋅液與X80鋼表面張力、潤濕性及界面反應的影響——實驗
> 表面張力能怎么玩?下面就是一些常見的小實驗方案~
> 常見表面活性劑分類、性質、水溶液潤濕性、與表面張力間的關系
> 基于表面張力的水質檢測與分析
> 連接基對3種表面活性劑GSS271、GSS371和GSS471動態表面性能的影響(上)
推薦新聞Info
-
> Layzer模型與Zufiria模型研究界面張力對Rayleigh-Taylor氣泡不穩定性的影響
> 深過冷Ni-15%Sn合金熔體表面張力的實驗研究與應用前景
> ?表面張力在微孔曝氣法制備微氣泡中的核心作用——基于實驗研究的深度解析
> 十二胺功能化石墨烯量子點的制備、表面張力及對L-薄荷醇的緩釋作用(三)
> 十二胺功能化石墨烯量子點的制備、表面張力及對L-薄荷醇的緩釋作用(二)
> 十二胺功能化石墨烯量子點的制備、表面張力及對L-薄荷醇的緩釋作用(一)
> 超微量天平比普通電子天平“好”在哪?
> 界面張力儀評估氨基化氧化石墨烯-脂肪酸共吸附機制、應用潛力(四)
> 界面張力儀評估氨基化氧化石墨烯-脂肪酸共吸附機制、應用潛力(三)
> 界面張力儀評估氨基化氧化石墨烯-脂肪酸共吸附機制、應用潛力(二)
表面張力對乙醇液滴沖擊過冷水平壁面的鋪展動力學行為的影響(二)
來源:西安交通大學學報 瀏覽 888 次 發布時間:2025-01-02
1.2數據處理
實驗數據處理方法如圖2所示。首先,使用圓形薄片進行標定,以確定高速攝像機鏡頭的放大比例,圓形薄片的水平直徑和垂直直徑分別為Lh和Lv,如圖2(a)所示。其次,根據乙醇液滴即將接觸過冷水平壁面的最后3幀計算沖擊速度,如圖2(b)所示,沖擊速度的計算公式為
式中:X3f為乙醇液滴最后3幀移動的距離;t2f為移動時間。(a)圓形薄片兩方向長度測量(b)液滴沖擊速度測量(c)液滴初始直徑測量(d)最大鋪展因子測量圖2實驗數據處理方法
最后,使用PFV軟件針對液滴的初始直徑及鋪展過程中的參數進行測量,如圖2(c)、2(d)所示,分別從水平與垂直兩個角度進行測量,并根據圓形薄片的水平和垂直角度放大比例,計算得到各物理量的真實值,計算公式為
式中:Xv為垂直測量值;Xh為水平測量值。
根據實驗數據測量值,乙醇液滴沖擊過冷水平壁面的雷諾數Re=ρU0D0/μ為2795,韋伯數We=ρU20D0/σ為354,奧內佐格數Oh=We/Re為0.0067。雷諾數代表慣性力與黏性力的比值,韋伯數代表慣性力和表面張力的比值,奧內佐格數代表黏性力與表面張力的比值。
2、結果討論
2.1乙醇液滴沖擊過冷水平壁面的現象
乙醇液滴沖擊過冷水平壁面表現出兩種不同模式。定義水平壁面過冷度為ΔT=273.15-Ts,其中Ts為水平壁面溫度,實驗涉及的過冷度有7個,分別為0、6、12、18、24、30和36K。如圖3所示,乙醇液滴以2.43m/s的初速度沖擊過冷度ΔT=6.0K的水平壁面時,在沖擊后立即鋪展,同時在液滴邊緣發生飛濺。子液滴向周圍各個方向散落,經歷一段時間的鋪展后逐漸趨于穩定,這一模式被稱為模式Ⅰ飛濺-鋪展。當水平壁面過冷度逐漸增大,如圖4所示,ΔT=30.0K時,乙醇液滴沖擊過冷水平壁面后同樣發生鋪展,同時子液滴飛濺,但隨著鋪展程度增大,液滴邊緣在最大鋪展時間時出現“手指狀突起”,這一模式Ⅱ被稱為飛濺-突起。
乙醇液滴沖擊過冷水平壁面會在兩個階段出現飛濺或手指狀突起,但兩者形成的機理有所不同:前者是由于乙醇液滴的表面張力較小,液滴在沖擊水平壁面的一瞬間,慣性力大于表面張力,液滴邊緣無法保持原狀,因而造成了飛濺;后者是由于液滴沖擊過冷水平壁面,經過一段時間換熱,液滴底部及邊緣的溫度降低,使得流體的密度增大,加劇了液滴與空氣的密度差,在邊緣前進速度的作用下,觸發了液體-氣體界面的瑞利-泰勒不穩定性,形成了手指狀突起。總而言之,水平壁面過冷度較低時,乙醇液滴沖擊形成模式Ⅰ飛濺-鋪展;水平壁面過冷度較高時,沖擊現象向模式Ⅱ飛濺-突起轉變。
2.2水平壁面過冷度對鋪展動力學行為的影響
為了探究水平壁面過冷度對液滴沖擊的影響機制,定義無量綱鋪展因子β=D(t)/D0,其中D(t)為液滴每一時刻的直徑,Dmax為液滴能達到的最大鋪展直徑,對應的最大鋪展因子為βmax=Dmax/D0。圖5展示了不同水平壁面過冷度下,乙醇液滴沖擊水平壁面的鋪展因子β隨時間的變化曲線。可以看出,乙醇液滴沖擊不同過冷度水平壁面均在1.0ms內發生破碎-飛濺,在這段時間內,鋪展速率近似為線性,在飛濺后,β突然減小,隨后鋪展因子繼續增,鋪展速率逐漸減小,最終趨于0,液滴形態不再發生變化。
根據液滴鋪展隨時間的變化,提取了不同過冷度下的βmax和tmax并繪制了圖6。如圖所示:隨著水平壁面過冷度的增大,βmax呈現了先減小后增大的非單調變化趨勢,并在水平壁面過冷度為18.0~30.0K時達到最小值;不同于βmax的變化趨勢,tmax呈現逐漸減小的趨勢,這是由于隨著水平壁面過冷度的增加,換熱加劇,液滴的溫度降低,這使得密度、黏度、表面張力增加,抑制了最大鋪展時間。根據Shang等提出的換熱模型,將乙醇液滴看作一個整體,并將液滴沖擊過冷水平壁面的過程看作圓柱形不斷“變矮”和“變寬”的過程,可以得到乙醇液滴沖擊過冷水平壁面的溫度降低范圍為1.8~3.7K。





