合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 桐油基衍生物鈉鹽的表面張力、CMC值測定、乳液穩(wěn)定性、固化膜性能測試(二)
> 典型離子型與非離子型起泡劑的界面行為對泡沫性能的影響機(jī)制
> 表面張力的意義,醇類在不同溫度下的表面張力測定數(shù)據(jù)
> 利用具有較強(qiáng)的表面張力的羧酸改良氧化鉛鋅礦球團(tuán)干粉成型粘合劑
> 不同質(zhì)量濃度、pH、鹽度對三七根提取物水溶液表面張力的影響(二)
> 二氧化碳?xì)怏w保護(hù)焊表面張力過渡的解決辦法
> 土壤裂隙發(fā)育過程中氣—液界面張力因素
> 新型添加劑濃度對水合物溶液的表面張力的影響
> 如何降低水的表面張力:實驗室技術(shù)人員的專業(yè)指南
> CO2泡沫穩(wěn)定性原理、影響因素|CO2-EOR機(jī)理與應(yīng)用前景(一)
推薦新聞Info
-
> 新型多功能解堵體系-單相酸體系乳化、界面張力測定及現(xiàn)場應(yīng)用效果(二)
> 新型多功能解堵體系-單相酸體系乳化、界面張力測定及現(xiàn)場應(yīng)用效果(一)
> 不同干燥方式對蛋清蛋白功能特性、溶解度、接觸角、表面張力的影響(四)
> 不同干燥方式對蛋清蛋白功能特性、溶解度、接觸角、表面張力的影響(三)
> 不同干燥方式對蛋清蛋白功能特性、溶解度、接觸角、表面張力的影響(二)
> 不同干燥方式對蛋清蛋白功能特性、溶解度、接觸角、表面張力的影響(一)
> CO2泡沫穩(wěn)定性原理、影響因素|CO2-EOR機(jī)理與應(yīng)用前景(四)
> CO2泡沫穩(wěn)定性原理、影響因素|CO2-EOR機(jī)理與應(yīng)用前景(三)
> CO2泡沫穩(wěn)定性原理、影響因素|CO2-EOR機(jī)理與應(yīng)用前景(二)
> CO2泡沫穩(wěn)定性原理、影響因素|CO2-EOR機(jī)理與應(yīng)用前景(一)
低界面張力納米流體提高低滲透油藏壓裂滲吸速率和采收率(二)
來源:油田化學(xué) 瀏覽 882 次 發(fā)布時間:2024-12-06
2結(jié)果與討論
2.1表面活性劑TPHS的紅外光譜分析
TPHS表面活性劑的紅外光譜譜圖如圖2所示。其中,3351 cm-1處為分子間氫鍵、羥基O—H的伸縮振動峰;1356 cm-1處為羥基O—H的面內(nèi)彎曲振動峰;2880 cm-1處為甲基C—H的伸縮振動峰;1230和1117 cm-1處為磺酸鹽S=O鍵的不對稱伸縮振動峰;696、762和841 cm-1處分別為苯環(huán)芳烴鄰位、間位、對位的C—H鍵的面外彎曲振動峰;1460 cm-1處為苯環(huán)骨架C—C伸縮振動峰;1960和2094 cm-1處為苯環(huán)上C—H的伸縮振動吸收弱的倍頻譜,538 cm-1處為取代苯環(huán)的面外彎曲振動峰,證明所合成的表面活性劑為目標(biāo)產(chǎn)物。
圖2表面活性劑TPHS的紅外光譜圖
經(jīng)高效液相色譜分析得出,所合成表面活性劑TPHS的純度為94.6%。
2.2表面活性劑TPHS的油水界面活性
根據(jù)吉布斯吸附理論,為了達(dá)到超低油/水界面張力,表面活性劑分別與油相和水相發(fā)生強(qiáng)的相互作用并且在油水界面達(dá)到飽和吸附。這要求表面活性劑同時具有大的親水基和疏水基。不同濃度的表面活性劑TPHS溶液與大慶原油間的界面張力如圖3所示,隨著表面活性劑TPHS質(zhì)量分?jǐn)?shù)的增大,界面張力先減小后緩慢增大,在較大的濃度范圍內(nèi)可保持在10-1mN/m數(shù)量級。TPHS質(zhì)量分?jǐn)?shù)為0.07%時,界面張力達(dá)到最低,為0.276 mN/m。TPHS具有較好的降低油水界面張力的能力。
圖3不同濃度表面活性劑TPHS溶液與原油間的界面張力
2.3 NaCl對表面活性劑TPHS界面活性的影響
采用不同濃度的NaCl溶液配制質(zhì)量分?jǐn)?shù)為0.3%的表面活性劑TPHS溶液,其與原油間的界面張力見圖4。THPS溶液與原油間的界面張力隨NaCl濃度的增大先降低后增加。這是因為在低NaCl濃度下,表面活性劑分子多存在于水相中;隨著NaCl濃度的增大,表面活性劑分子從水相中慢慢分散到油相中,NaCl的加入壓縮了擴(kuò)散雙電層的厚度,破壞親水基周圍的水化膜,使表面活性劑更容易吸附在油水界面層,因而界面張力不斷下降;達(dá)到一定鹽濃度后,水相與油相中所含表面活性劑濃度接近時,可達(dá)到最低界面張力。NaCl含量繼續(xù)增加時,油水界面吸附失去平衡,界面張力上升。從實驗結(jié)果來看,在NaCl含量在0~300 g/L范圍內(nèi),表面活性劑TPHS溶液與原油間的界面張力均能保持在10-1mN/m數(shù)量級,說明表面活性劑TPHS具有優(yōu)良的抗鹽能力。
圖4含不同濃度NaCl的TPHS溶液與原油間的界面張力(TPHS質(zhì)量分?jǐn)?shù)0.3%)
2.4 TPHS復(fù)配體系的界面活性與潤濕性
表面活性劑之間通過復(fù)配可以彌補(bǔ)其性能單一的缺點。陰離子表面活性劑和非離子表面活性劑的復(fù)配使其具有良好的協(xié)同效應(yīng),既可彌補(bǔ)陰離子表面活性劑不耐鈣鎂離子的不足,又可以提高非離子表面活性劑的濁點。由于TPHS的親水基為非離子基團(tuán),復(fù)配陰離子表面活性劑AOS可以提高表面活性劑的濁點,實驗結(jié)果如表1所示,TPHS與AOS復(fù)配后,濁點大大提高;TPHS在地層吸附量較大,復(fù)配納米SiO2在減少地層吸附的同時可以提高滲吸速率。0.1%TPHS、0.05%SiO2、0.1%TPHS+0.2%AOS和0.1%TPHS+0.2%AOS+0.05%SiO2體系與原油間的界面張力及其在親水載玻片上的接觸角測試結(jié)果如表1所示。在80℃下,復(fù)合體系0.1%TPHS+0.2%AOS和0.1%TPHS+0.2%AOS+0.05%SiO2與原油間的界面張力均達(dá)到10-2mN/m數(shù)量級,與TPHS單一表面活性劑相比,復(fù)配體系更有效地降低了油水界面張力。在納米SiO2與表面活性劑的協(xié)同作用下,低張力納米流體(0.1%TPHS+0.2%AOS+0.05%SiO2)在親水載玻片上的接觸角遠(yuǎn)大于單獨納米SiO2或表面活性劑的溶液的。這是因為表面活性劑在納米SiO2顆粒表面的吸附使得玻璃表面親水性能減弱,因而使得接觸角增大,這一現(xiàn)象說明低張力納米流體有較好的潤濕性能。
表1復(fù)配體系的界面活性與潤濕性測試





